TeV-band galactic science

Martin Pohl

Introduction

Galactic science is rich!

- Supernova remnants
- Pulsar wind nebulae
- Pulsars
- Binaries
- The Galactic center

The Galactic center

VERITAS is particularly sensitive to multi-TeV gamma rays

No evidence for variability

→ Do we really see Sgr A*?

Power-law spectrum extends to 20 TeV

High statistical accuracy above 10 TeV

Precise measurement of cut off

The Galactic center

Extended emission (first seen with H.E.S.S.)

Sgr A* subtracted G0.9+0.1 subtracted

Extended source VER J1746-289

Appears point-like in HESS data

Possibly associated with radio arc Energy-dependent extent?

In the early 2000's we knew for certain

- Galactic supernova remnants accelerate to PeVs
- Cosmic-ray spectra are hard in the TeV band
- We can distinguish leptonic and hadronic γ rays

In the early 2000's we knew for certain

- Galactic supernova remnants accelerate to PeVs
- Cosmic-ray spectra are hard in the TeV band
- We can distinguish leptonic and hadronic γ rays

Now we know better ...

IC 443: The messy supernova remnant Little, if any, spectral variation

Hard spectra expected in the TeV band

... not really seen, spectra tend to be soft

Cosmic-ray spectra

From a paper published in 2006

Gamma-ray spectra

Model refinements are explored.

- Motion of scattering turbulence
- Secondary acceleration by turbulence

• Imperfect build-up of turbulence

Supernova remnants: Cas A

How to make sense of that?

Supernova remnants: Cas A

It's the magnetic field, stupid!

Jun 28-29, 2017

10 years VERITAS

Supernova remnants: Cas A

Weaker magnetic field

Stronger magnetic field

Electrons: magenta and green

Hadrons: blue

Distinguishing requires information at 1-400 MeV

Tycho's Supernova remnant

Type Ia Supernova → clean environment

Statistical analysis:

Signal comes from remnant itself

Jun 28-29, 2017

10 years VERITAS

Tycho's Supernova remnant

Direct, model-independent assessment of average magnetic field

With damping B>170 μG

Pulsars

Some supernovae leave behind a pulsar

Crab nebula and pulsar

Crab pulsar

Gamma-ray not produced at inner acceleration gap

but rather close to or beyond the light cylinder

Jun 28-29, 2017

Pulsar wind nebula

MGRO J1908+06 resolved with VERITAS A pulsar outside the remnant of its parent supernova

No evidence of spectral variation

Complex interaction between PWN and SNR?

Black contours: CO

Pulsar wind nebula

Spectral variability is normal in composite sources Example: MGRO J2019+37 resolved with VERITAS

Pulsar wind nebula

How many sources make up MGRO J2019+37?

We identified CTB87 and a large extended region

Brightness profile: 2 or 3 sources?

49 -21 8 37 66 94 123 152

Gamma-ray binaries: HESS J0632-057

Originally an unidentified TeV source

Initial non-detection with VERITAS → variability

Periodicity found in X rays, confirmed in γ-rays

No detection yet in GeV band with Fermi LAT

Gamma-ray binaries: HESS J0632-057

Correlated variability in X rays and TeV gamma rays

Two peaks in light curve

... an effect of orbit eccentricity?

A B0 Ve 25 star and a compact object

A massive B0 Ve 25 star and a compact object

Nightly TeV variability

Uncorrelated GeV and TeV emission

GeV spectrum similar to that of a pulsar

Baseline TeV emission seen throughout entire orbit Strong gamma-ray flares in some orbits

Little spectral variation

Gamma-ray binaries: TeV J2032+4130

First unidentified TeV source (1990s, HEGRA)

2014: Association with pulsar A pulsar wind nebula?

Fits to know pulsar wind nebulae

10 years VERITAS

Gamma-ray binaries: TeV J2032+4130

A possible partner in a long-period binary shortly approaching periastron

(Lyne et al. 2015)

X-ray flux increases significantly What will the gamma-ray flux do?

Conclusion

10 years of VERITAS operation

- A rich harvest of Galactic science
- Fundamental advances in understanding
- Physics interpretation combines all messengers
- There is more to come ...